An Interpretative Data Analysis of Chinese Named Entity Subtypes
نویسنده
چکیده
"In assessing the performance of information extraction systems, we are interested in knowing the classes of errors made and the circumstances in which they are made."[!] However, to date the Tipster scoring categories (correct, partial, incorrect, spurious, missing, and noncommitta[) have not been applied to classes of data based on structural distinctions in the language, or on semantic subclasses more finely differentiated than the NE types (person, location, organization, time, date, money, and percent). For example, there has been no attempt to score the extraction of transliterated foreign person names, or of short-form aliases of corporation names. or of Julian dates as opposed to Gregorian dates as opposed to dates of the Chinese lunar calendar.
منابع مشابه
Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملSIR-NERD: A Chinese Named Entity Recognition and Disambiguation System using a Two-Stage Method
This paper presents our SIR-NERD system for the Chinese named entity recognition and disambiguation Task in the CIPS-SIGHAN joint conference on Chinese language processing (CLP2012). Our system uses a two-stage method and some key techniques to deal with the named entity recognition and disambiguation (NERD) task. Experimental results on the test data shows that the proposed system, which incor...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملChinese Named Entity Recognition Using Role Model
This paper presents a stochastic model to tackle the problem of Chinese named entity recognition. In this research, we unify component tokens of named entity and their contexts into a generalized role set, which is like part-of-speech (POS). The probabilities of role emission and transition are acquired after machine learning on a role-labeled data set, which is transformed from a hand-correcte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996